金沙澳门官网官方网站

联系我们  |  网站地图  |     |    |  |
站内搜索:
首页 简介 管理部门 科研部门 支撑部门 研究队伍 科研成果 成果转化 研究生教育 党建与创新文化 科普 信息公开 OA系统
学术活动
膦配体促进的手性药物高效...
东生讲坛第31期:探索无穷...
生命健康材料协同创新中心...
基于介孔粉体低温烧结制备...
多孔块体材料的制备及应用...
石榴石结构闪烁晶体/陶瓷...
硅酸铋闪烁晶体及其掺杂改性
无机发光材料及其应用
Neutron/synchrotron X-ra...
Monitoring hydrocarbon c...
DAMPE谱仪在轨状态及最新...
中子衍射在复杂磁结构中的...
基于PMN-PT单晶的医用超声...
中国科学院能量转换材料重...
透明陶瓷研究中心2019年青...
现在位置:首页>新闻动态>学术活动
Interlayer magnetic coupling of CrXn (X=I, S, Se; n=2,3) van der Waals bilayers
发布时间: 2020-09-07 08:38 | 【 【打印】【关闭】

SEMINAR

The State Key Lab of

High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences

中 国 科 学 院 上 海 硅 酸 盐 研 究 所 高 性 能 陶 瓷 和 超 微 结 构 国 家 重 点 实 验 室 

    

 

Interlayer magnetic coupling of CrXn (X=I, S, Se; n=2,3) van der Waals bilayers 

   

  

中国人民大学物理系

   

时间:2020 9 7 日(星期一)上午 10:00

地点:嘉定园区 F 81 会议室

   

欢迎广大科研人员和研究生参与讨论!

    

联系人:孙宜阳(69906536 


报告摘要: 

  Two-dimensional magnetic materials have attracted tremendous attention since their experimental isolation and measurements in 2017. It becomes clearer that the interlayer magnetic coupling plays a paramount role in terms of magnetic properties of two-dimensional layers. In the literature, several spin-exchange mechanisms were proposed to understand the exchange couplings, e.g. super-exchange and double-exchange. All these mechanisms were developed in materials bonded with strong chemical interactions, e.g. covalent and metallic bonds. It is not clear if these mechanisms work for van der Waals (vdW) gaps where relatively weak vdW interactions govern, which was believed to show inappreciable change of electronic structures. Here, we employed first-principles density functional theory calculations to reveal the interlayer magnetic coupling mechanism at the vdW gaps of CrI3, CrS2 and CrSe2 bilayers. We found an orbital dependent magnetic coupling mechanism in CrI3 and predict that different interlayer orbital interactions led by different stacking orders result in interlayer ferro- and anti-ferro-magnetic couplings. In addition, we found a Bethe-Slater-curve-like relation between the interlayer magnetism and interlayer distance. A Pauli energy term was introduced to the Hubbard model for understanding such BSC-like behaviour. In the last part of this talk, I discuss a recently observed spin-orbit polaron on the surface of Co3Sn2S2, a magnetic Weyl semimetal, which shows a strong diamagnetic behaviour.

        

主讲人简介: 

Dr. Ji, Wei is a computational physicist, working in the field of surface and interface modeling of low-dimensional materials. His research interests include surface and interface modeling of emerging electronic materials and devices. Recently, he focuses on theoretical modeling of electronic, optical, and vibrational properties of two-dimensional materials. He has been also developing theoretical methods for describing beam effects in scanning transmission microscopy and understanding ultrahigh resolution in noncontact atomic force microscopy. He received his Ph.D in condensed matter physics from the Institute of Physics, Chinese Academy of Science in 2008. Prior to joining Renmin University of China, he spent four years in McGill University as a visiting scholar and then a postdoctoral fellow. He was originally appointed as an Associated Professor by Renmin University in 2010 and was early promoted to Full Professor in 2014. He was supported by the National Young Top-Notch Talent Program in 2014, the National Science Fund for Excellent Young Scholars in 2016 and awarded Chang-Jiang Young Scholars in 2015. He also serves as an Associated Editor of ACS Applied Electronic Materials, an Editorial Board Member of Science Bulletin and trustees in the youth committee and computational materials science division of the Chinese Materials Research Society. 

版权所有 金沙澳门官网官方网站 沪ICP备05005480号-1
长宁园区地址:上海市长宁区定西路1295号 电话:86-21-52412990 传真:86-21-52413903 邮编:200050
嘉定园区地址:上海市嘉定区和硕路585号  电话:86-21-69906002 传真:86-21-69906700 邮编:201899